8 research outputs found

    Radio Resource Management in Heterogeneous Cellular Networks

    Get PDF
    Heterogeneous cellular networks (HetNets) have been considered as one of enabling technologies not only to increase the cell coverage and capacity, but to improve the user experience. In this dissertation, we address two research challenges in HetNets: one is the cross-tier interference problem where cell range expansion (CRE) is applied for user offloading in cell association so that pico mobile stations located in expanded range (ER-PMSs), which are connected to macrocells unless CRE is enabled, are severely interfered. The other is the load-aware cell association which tries to overcome the drawback of the received signal strength-based cell association including CRE, i.e., the degradation of network performance by user load imbalance. In the first part, we present the frequency-domain transmit power reduction scheme for the cross-tier interference mitigation. Inspired by the fact that a macrocell accommodates more users than its underlaid picocells, we focus on minimizing the macrocell's performance degradation while improving the throughput of ER-PMSs by the transmit power reduction. Due to the discreteness of frequency resource block scheduling, we also propose a greedy-based heuristic algorithm to solve the binary integer programming problem. In the following part, we present a different approach for the cross-tier interference mitigation, which is the time-domain transmit power nulling scheme utilizing the almost blank subframes (ABSs) in 3GPP standards. We turn our attention to a network-wide performance enhancement through configuring a certain number of ABSs while improving the performance of ER-PMSs as in the first part. A new scheduling policy for pico mobile stations is proposed and the optimal ER-PMS scheduling onto ABSs/non-ABSs is solved by decomposing the problem into multiple independent problems for pico base stations. In the last part, we study the load-aware cell association problem. Due to the combinatorial nature of the cell association problem and the cross-tier interference between macrocells and picocells, we propose an online heuristic algorithm where the cell association and the number of ABSs for cross-tier interference mitigation are jointly optimized. Through approximation of the required condition for load balancing and ABS control from the network-wide utility point of view, the proposed online algorithm not only requires simple feedback messages, but also be applicable to any state of cell association/ABSs in HetNets

    Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds

    Get PDF
    Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance

    Round-robin test on thermal conductivity measurement of ZnO nanofluids and comparison of experimental results with theoretical bounds

    No full text
    Abstract Ethylene glycol (EG)-based zinc oxide (ZnO) nanofluids containing no surfactant have been manufactured by one-step pulsed wire evaporation (PWE) method. Round-robin tests on thermal conductivity measurements of three samples of EG-based ZnO nanofluids have been conducted by five participating labs, four using accurate measurement apparatuses developed in house and one using a commercial device. The results have been compared with several theoretical bounds on the effective thermal conductivity of heterogeneous systems. This study convincingly demonstrates that the large enhancements in the thermal conductivities of EG-based ZnO nanofluids tested are beyond the lower and upper bounds calculated using the models of the Maxwell and Nan et al. with and without the interfacial thermal resistance.</p

    Discovery of Phenylaminopyridine Derivatives as Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors

    No full text
    We identified a novel class of aryl-substituted triazine compounds as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) during a high-throughput screening campaign that evaluated more than 200000 compounds for antihuman immunodeficiency virus (HIV) activity using a cell-based full replication assay. Herein, we disclose the optimization of the antiviral activity in a cell-based assay system leading to the discovery of compound <b>27</b>, which possessed excellent potency against wild-type HIV-1 (EC<sub>50</sub> = 0.2 nM) as well as viruses bearing Y181C and K103N resistance mutations in the reverse transcriptase gene. The X-ray crystal structure of compound <b>27</b> complexed with wild-type reverse transcriptase confirmed the mode of action of this novel class of NNRTIs. Introduction of a chloro functional group in the pyrazole moiety dramatically improved hERG and CYP inhibition profiles, yielding highly promising leads for further development
    corecore